Sains Malaysiana 52(9)(2023):
2645-2655
http://doi.org/10.17576/jsm-2023-5209-14
The Prediction of Landslide Slip Surface
Based on the Correlation Between Relative Density and Dynamic Cone Penetration
Test
(Ramalan Satah Gelinciran Tanah Runtuh daripada Ketumpatan Relatif dan Ujian Kon Penembusan Dinamik)
NOR
SHAHIDAH MOHD NAZER, AHMED MOHAMED KOTB SHAHIN, AZLAN SHAH NERWAN SHAH, GOH
THIAN LAI*, MOHD ROZI UMOR & MOHAMAD ANURI GHAZALI
Jabatan Sains Bumi dan Alam Sekitar, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
Received: 18 April 2023/Accepted: 14 August 2023
Abstract
Relative density is one of the most important properties indicating the
strength and state of compaction of the soil. The dynamic cone penetration test
is considered one of the fastest field tests for evaluating the relative
strength of soil layers, including density. In this study, an attempt is made
to correlate the relative density of the landslide soil with the dynamic cone
penetration results. The aim of this
study was to delineate the boundary between moving and in-situ soil for
the prediction of slip surfaces and finally to conceptualise the underlying
mechanism behind the initiation of a landslide. The
results of the penetration tests give an increasing index of 1.9 - 2.4 cm/blow,
2.8 - 3 cm/blow and 3.2 cm/blow for the upper, middle and lower parts (toe),
respectively. Using the correlation equation, the calculated relative density
in the field was found to agree well with the relative density measured in the
laboratory with a standard deviation of ±1.5%. The relationship between the
relative density and the penetration index shows an inverse relationship where
the resistance of the soil to dynamic penetration increases as the relative
density of the soil increases, thus decreasing the penetration index. This
result can be used to accurately conceptualize the mechanism behind a landslide
using a simple and rapid field device.
Keywords: Dynamic cone penetrometer; landslide; relative density; soil
index properties
Abstrak
Ketumpatan relatif adalah salah satu sifat
terpenting yang menunjukkan kekuatan dan keadaan pemadatan tanah. Ujian
penembusan kon dinamik dianggap sebagai salah satu ujian lapangan terpantas
untuk menilai kekuatan relatif lapisan tanah, termasuk ketumpatan. Dalam kajian
ini, suatu percubaan dibuat untuk mengaitkan ketumpatan relatif tanah runtuhan
tanah dengan keputusan penembusan kon dinamik. Matlamat kajian ini adalah untuk
menentukan sempadan antara tanah bergerak dan tanah asal bagi penentuan satah
gelinciran dan akhirnya untuk membangunkan mekanisme konsep di sebalik
permulaan sesuatu tanah runtuh. Keputusan ujian penembusan menunjukkan peningkatan indeks sebanyak 1.9 -
2.4 cm/hentakan, 2.8 - 3 cm/hentakan dan 3.2 cm/hentakan, masing-masing untuk
bahagian atas, tengah dan bawah. Menggunakan persamaan korelasi, ketumpatan
relatif yang dihitung di lapangan didapati berkorelasi dengan baik dengan
ketumpatan relatif yang diukur di makmal dengan sisihan piawai ±1.5%. Hubungan
antara ketumpatan relatif dan indeks penembusan menunjukkan hubungan songsang
dengan rintangan tanah terhadap penembusan dinamik meningkat apabila ketumpatan
relatif tanah meningkat, lalu merendahkan indeks penembusan. Keputusan ini
boleh digunakan dengan tepat untuk mengkonsepkan mekanisme di sebalik tanah
runtuh dengan menggunakan alatan lapangan yang mudah dan pantas.
Kata kunci: Ketumpatan relatif; kon penembusan dinamik; sifat indeks tanah; tanah runtuh
REFERENCES
Alam, M.J.,
Hossain, M.S. & Azad, A.K. 2014. Development of correlation between dynamic
cone resistance and relative density of sand. Journal of Civil Engineering
(IEB) 42(1): 63-76.
ASTM 7928 -17.
2017. Standard Test Method for Particle-Size Distribution (Gradation) of
Fine-Grained Soils Using the Sedimentation (Hydrometer) Analysis. West
Conshohocken, PA: ASTM International.
ASTM D4318-17e1.
2017. Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity
Index of Soils. West Conshohocken, PA: ASTM International.
ASTM
D6913/D6913M-17. 2017. Standard Test Methods for Particle-Size Distribution
(Gradation) of Soils using Sieve Analysis. West Conshohocken, PA: ASTM
International.
ASTM D6951-09R15.
2015. Standard Test Method for Use of the
Dynamic Cone Penetrometer in Shallow Pavement Applications. West
Conshohocken, PA: ASTM International.
ASTM D854-14.
2014. Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer. West Conshohocken, PA: ASTM International.
Ayers, M.E.,
Thompson, M.R. & Uzarski, D.R. 1989. Rapid shear
strength evaluation of in situ granular materials. Transportation Research Record 1227: 134-146.
Batumalai, P., Mohd Nazer, N.S., Simon, N., Sulaiman, N., Umor, M.R. & Ghazali, M.A. 2023. Soil detachment rate of a
rainfall-induced landslide soil. Water 15(12): 2149.
BS 1377: Part 2.
1990. Methods of Test for Soils for Civil
Engineering Purposes, Classification Tests. British Standard Institute.
Byun, Y.H. &
Lee, J.S. 2013. Instrumented dynamic cone penetrometer corrected with
transferred energy into a cone tip: A laboratory study. Geotechnical Testing Journal 36: 1-10. doi:
10.1520/GTJ20120115
Cerri, R.I., Reis,
F.A.G.V., Gramani, M.F., Giordano, L.C. & Zaine, J.E. 2017. Landslides zonation hazard: Relation
between geological structures and landslides occurrence in hilly tropical
regions of Brazil. Annals of the
Brazilian Academy of Sciences 89(4): 2609-2623.
Cruden, D.M. 2003. The first classification of
landslides? Environmental and Engineering Geoscience 9(3): 197-200.
Diana, M.I.N.,
Muhamad, N., Taha, M.R., Osman, A. & Alam, M.M. 2021. Social vulnerability assessment for
landslide hazards in Malaysia: A systematic review study. Land 10(3): 315. https://doi.org/10.3390/land10030315
Du, Y.J., Jiang,
N.J., Liu, S.Y., Horpibulsuk, S. & Arulrajah, A. 2016. Field evaluation of soft highway
subgrade soil stabilized with calcium carbide residue. Soils and Foundations 56(2): 301-314.
Hong, W.T., Yu,
J.D., Kim, S.Y. & Lee, J.S. 2019. Dynamic cone penetrometer incorporated
with Time Domain Reflectometry (TDR) sensors for the evaluation of water
contents in sandy soils. Sensors (Basel) 19(18): 3841.
Hussin, H., Ariffin, M.H., Sulaiman, M.A.A.
& Fauzi. 2017. Effectiveness of 2-D resistivity
survey to identify lineament (Fault) from photolineament interpretation - Case study at Kampung Dato’ Mufti, Ampang, Selangor. Journal of Tropical Resources and
Sustainable Science 5: 1-8.
Ibrahim, K. 1987.
Survey of slope failures in Selangor. Sains Malaysiana 16(1): 1-14.
Ibrahim, K. 1984.
Geological aspect engineering of the earth in Bangi,
Selangor. Ilmu Alam 12&13: 41-54.
Ivanov, V., Arosio, D., Tresoldi, G., Hojat, A.,
Zanzi, L., Papini, M. & Longoni, L. 2020. Investigation on the role of water
for the stability of shallow landslides-Insights from
experimental tests. Water 12: 1203.
Jaafar, M., Yusof, A.H. & Yahaya, A. 2011.
An analysis of landslide level using the ROM scale: The case of the Universiti Kebangsaan Malaysia Bangi campus. Malaysian
Journal of Society and Space 7(3): 45-55.
Kazmi, D., Qasim, S., Harahap, I.S.H., Baharom, S., Imran, M. & Moin,
S. 2016. A study on the contributing factors of major landslides in Malaysia. Civil Engineering Journal 2(12):
669-678.
Kleyn, E.G. 1975. The
Use of the Dynamic Cone Penetrometer (DCP). Report No. 2/74 Transvaal Road Dept, South Africa.
Lee, D-H., Lai,
M-H., Wu, J-H., Chi, Y-Y., Ko, W-T. & Lee, B-L.
2013. Slope management criteria for Alishan Highway
based on database of heavy rainfall-induced slope failures. Engineering Geology 162: 97-107.
Leonarduzzi, E., McArdell, B.W. & Molnar, P. 2021. Rainfall-induced
shallow landslides and soil wetness: Comparison of physically based and
probabilistic predictions. Hydrology and
Earth System Sciences 25(11): 5937-5950.
https://doi.org/10.5194/hess-25-5937-2021
MacRobert, C.J., Bernstein,
G.S. & Nchabeleng, M.M. 2019. Dynamic Cone Penetrometer
(DCP) relative density correlations for sands. Soils and Rocks 42(2): 201-207.
Maghvan, S.V., Imam, R.
& McCartney, J.S. 2019. Relative density effects on the bearing capacity of
unsaturated sand. Soils and Foundations 59(5): 1280-1291.
Maturidi, A.M.A.M., Kasim, N., Taib, K.A., Azahar, W.N.A.W. & Tajuddin,
H.B.A. 2021. Empirically based rainfall threshold for landslides occurrence in
Peninsular Malaysia. KSCE Journal of
Civil Engineering 25: 4552-4566. https://doi.org/10.1007/s12205-021-1586-4
McElvaney, J. & Bundadidjatnika, I.R. 1991. Strength evaluation of lime-stabilised pavement foundations using the dynamic cone
penetrometer. Australian Road Research 21: 45-52.
Mohammadi, S.D., Nikoudel, M.R., Rahimi, H. & Khamehchiyan, M. 2008. Application of the Dynamic Cone
Penetrometer (DCP) for determination of the engineering parameters of sandy
soils. Engineering Geology 101(3-4):
195-203.
Muhamad, N., Lim,
C-S., Reza, M.I.H. & Pereira, J.J. 2019. Keperluan peta kerentanan bencana sebagai input dalam pengurusan guna tanah: Kajian kes Universiti Kebangsaan Malaysia. Sains Malaysiana 48(1): 33-43.
Muhamad, N., Lim,
C-S., Reza, M.I.H. & Pereira, J.J. 2013. Input geologi untuk sistem sokongan membuat keputusan dalam pengurusan risiko bencana: Kajian kes Universiti Kebangsaan Malaysia. Bulletin
of the Geological Society of Malaysia 59: 73-84.
Oguz, E.A., Depina, I. & Thakur, V. 2022. Effects of soil
heterogeneity on susceptibility of shallow landslides. Landslides 19:
67-83. https://doi.org/10.1007/s10346-021-01738-x
Ran, Q., Hong, Y.,
Li, W. & Gao, J. 2018. A modelling study of rainfall-induced shallow
landslide mechanisms under different rainfall characteristics. Journal of Hydrology 563: 790-801.
Samsudin, A.R., Hamzah, U. & Ramli, Z. 2007.
An integrated geophysical study of the quaternary basin at Olak Lempit - Banting Area, Selangor, Malaysia. Sains Malaysiana 36(2): 159-163.
Shah, A.S.N., Nazer, N.S.M. & Harris, M.I. 2022. Morfologi hakisan dan sifat serakan lempung kaolinit dan montmorilonit di kawasan tropika. Sains Malaysiana 51(12): 3879-3896.
Prashanthan Thilagar 2019. Kajian kegagalan cerun di kediaman pengetua, Kolej Ibrahim Yaakub, UKM. MSc
Thesis. Universiti Kebangsaan Malaysia (Unpublished).
Varnes, D.J. 1978. Slope
movement types and processes. Special Report 176: 11-33.
Vordoagu, J.J., Boateng, K.A. & Timol, M.T.
2019. Correlation of penetration index of Dynamic Cone Penetrometer with
laboratory dry density and moisture content of lateritic gravel soils. International Research Journal of Engineering
and Technology 6(12): 1708-1722.
Wilches, F.J., Jairo, J., Díaz, F., Rodrigo, J. & Ávila, H. 2018.
Correlation between California Bearing Ratio (CBR) and Dynamic Cone
Penetrometer (DCP) for soil from Sincelejo city in Colombia. International Journal of Applied Engineering
Research 13(4): 2068-2071.
Yao, Y. 2017.
Study on the influence of human activities on loess landslide. Advances in Engineering Research 120:
60-63.
Zhang, X., Hu, W.,
Zheng, Y., Gou, H. & Gao, X. 2020. Effects of relative density in
progressive sliding of tailings deposits: Insights from flume tests. Engineering Geology 279: 105908.
Zulkafli, S.A., Abd Majid, N. & Rainis, R.
2023. Spatial analysis on the variances of landslide factors using
geographically weighted logistic regression in Penang Island, Malaysia. Sustainability 15(1): 852. https://doi.org/10.3390/su15010852
*Corresponding author; email: gohthianlai@ukm.edu.my
|